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Abstract-Due to the increasing traffic caused by multimedia 
information and digitized form of representation of images; 
image compression has become a necessity. New algorithms 
for image compression based on wavelets have been developed 
which offers considerable improvement in picture quality at 
high compression ratios. To achieve lowest errors per 
compression rate and highest perceptual quality, the existing 
image compression algorithms are need to be modified. In this 
paper, with the objective of achieving high image compression 
ratio with minimum number of errors, the features of existing 
image compression algorithms like Haar Wavelet Transform 
are increased and named as Modified Fast Haar Wavelet 
Transform (MFHWT). The Set Partitioning In Hierarchical 
Trees (SPIHT) along with Run Length Encoding (RLE) 
increases the compression ratio without degrading the image 
quality. Also, the modified algorithm reduces the number of 
computations in Haar transform, which decreases the 
processing time. The proposed work was simulated using 
MALAB and the results shows that the compression ratio 
increases without affecting the Peak Signal to Noise Ratio 
(PSNR) standards. 
 
Keywords- Image Compression, DWT, MFHWT, ESPIHT, 
RLE 

 
1. INTRODUCTION 

The uncompressed multimedia like graphics, audio and 
video data requires large storage capacity and transmission 
bandwidth despite rapid progress in mass storage density, 
processor speed, digital communication system 
performance and data transmission bandwidth continues to 
exceed the capabilities of available technologies. The 
recent growth of data demanding multimedia-based web 
applications have not only the need for more competent 
ways to encode signals and images but have made 
compression of such signals central to storage and 
communication technology. The Table 1 shows multimedia 
data types and uncompressed storage space, transmission 
bandwidth and transmission time required. The Table 1 
clearly illustrates the need for sufficient storage space, 
large transmission bandwidth and long transmission time 
for image, audio and video data. At the present technology, 
the only solution is to compress multimedia data before its 
storage and transmission, and decompress it at the receiver 
for playback [1].  
 
 

Table 1. Multimedia data 

Multi-
media 
data 

Size or 
duration

Bits/ 
pixel 

(or) Bits/
sample 

Un- 
Compress-

ed size 
(B-bytes) 

Transmi-
ssion 
Band-
width 

(b-bits) 

Transmi-
ssion Time 

(28.8 k 
Modem) 

Page of text 11” x 8.5”
Varying 

resolution
4.8KB 

32-64 
Kb/page 

1.1-2.2 Secs

Telephone 
Quality 
speech 

10 Secs 8 bps 80 KB 64 Kb/Sec 22.2 Secs 

Gray scale 
image 

512 x 512 8 bpp 262 KB 
2.1 Mb 
/image 

1 min 13 Secs

Color image 512 x 512 24 bpp 786 KB 
6.29 Mb 
/image 

3 min 39 Secs

Medical 
image 

2048 x 
2048 

12 bpp 5.16 MB 
41.3 Mb 
/image 

23 min 
54 secs 

       
      1.1 Image Compression 
The main aim of the Image compression is to reducing the 
number of bits required to symbolize an image by 
removing the spatial and spectral redundancies as much as 
possible. In many different fields, digitized images are used 
as photograph or x-rays rather than analog images. The 
volume of data needed to describe such images greatly 
slow transmission and makes storage prohibitively costly. 
Therefore the information contained in images must be 
compressed by extracting only visible elements, which are 
then encoded. To increase the compression of the data to 
represent an image substantially, the quantity of data is 
reduced. The essential goal of image compression is to 
reduce the bit rate for transmission or storage while 
maintaining an acceptable reliability or image quality. 
Wavelet-based coding provides a considerable 
improvement in picture quality at privileged compression 
ratios. Over the past few years, a variety of powerful and 
sophisticated wavelet-based schemes for image 
compression have been developed and implemented. A 
wavelet basis consists of functions with both short support 
(for high frequencies) and long support (for low 
frequencies). Because of the many advantages, wavelet 
based compression algorithms are the suitable for the new 
JPEG-2000 standards. Transform-based image compression 
is one of the most successful applications of wavelet 
methods. Such a coder operates by transforming the data to 
remove redundancy, then quantizing the transform 
coefficients (a lossy step), and finally entropy coding the 
quantizer output. The loss of information is introduced by 
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the quantization stage which intentionally discards less 
related parts of the image information [1]. Over the past 
few years, a variety of novel and sophisticated wavelet-
based image coding schemes have been developed. They 
are 
 
• Embedded Zero tree Wavelet (EZW),  
• Set-Partitioning in Hierarchical Trees (SPIHT),  
• Set Partitioned Embedded block coder (SPECK),  
• Wavelet Difference Reduction (WDR),  
• Adaptively Scanned Wavelet Difference                

Reduction (ASWDR), 
• Space –Frequency Quantization (SFQ),  
• Compression with Reversible Embedded Wavelet 

(CREW),  
• Embedded Predictive Wavelet Image Coder (EPWIC),  
• Embedded Block Coding with Optimized Truncation 

(EBCOT),   
• Stack- Run (SR). 

 
SPIHT introduced in [13] is an enhancement of EZW 
algorithm. By adopting set partitioning algorithm and 
exploring self-similarity across different scales in an image 
wavelet transform, SPIHT algorithm reaches high 
compression performance. With SPIHT, the image is first 
decomposed into a series of wavelet coefficients. Those 
coefficients are then grouped into sets known as spatial 
orientation trees. After that, the coefficients in each spatial 
orientation tree are encoded progressively from the most 
significant bit planes to the least significant bit planes, 
starting with the coefficients with the highest  
magnitude [14].  
 

As with EZW, the SPIHT algorithm involves two coding 
passes: the sorting pass and the refinement pass. The 
sorting pass looks for zerotrees and sorts significant and 
insignificant coefficients with respect to a given threshold. 
And the refinement pass sends the precision bits of the 
significant coefficients. After one sorting pass and one 
refinement pass, which can be considered as one scan pass, 
the threshold is halved, and the coding process is repeated 
until the expected bit rate is achieved. SPIHT achieves very 
compact output bit stream and low bit rate than that of its 
predecessor’s EZW without adding an entropy encoder, 
which allows its efficiency in terms of computational 
complexity. Moreover, it uses a subset partitioning scheme 
in the sorting pass to reduce the number of magnitude 
comparisons, which also decrease the computational 
complexity of the algorithm. Finally, the progressive mode 
of SPIHT allows the interruption of coding/decoding 
process at any stage of the compression [2]. Despite these 
advantages, SPIHT presents the limitations like large 
memory and delay shortcomings. To minimize these 
limitations, a novel technique is proposed by enhancing the 
SPIHT algorithm with the combination of Run Length 
coding for image compression. 
 

The rest of this paper is organized as follow. The next 
section, Section2, gives an outline of the related works on 
image compression. The Section 3 gives the objective of 
the proposed algorithm. The ESPIHT algorithm is 

explained in Section 4. Section5 shows results on the 
performance metrics and provides comparisons with the 
SPIHT coder. Finally Section 6 concludes the paper. 
 

2. LITERATURE SURVEY 
The authors Albertus Joko Santoso et al. considered the test 
images of size 512x512 and analyzed with different 
wavelets like Daubechies, Coiflet and Symlet with the 
objective of achieving high PSNR and compression ratio. 
The result analysis proved that Haar wavelet attains highest 
Compression Ratio and PSNR than Coiflet and Symlet 
wavelets [3]. 
 

The authors S.Narasimhulu et al. proposed lossy image 
compression algorithm which is simple and effective for 
gray-scale image compression with the combination of 
Huffman coding and proposed to extend the work for the 
color image and video compression [4].  
 

Anuj Bhardwaj et al. compared different image 
compression techniques like Haar Transform (HT), Fast 
Haar Transform (FHT), and Modified Fast Haar Wavelet 
Transform (MFHWT) on the basis of the Compression 
Ratio and PSNR. The results illustrates that the MFHWT 
has characteristics like sparse representation and fast 
transformation and easy to implement. The comparison 
results showed that the quality of reconstructed image is 
high in MFHWT [5].  
 

Kiran Arora et al. compared the image compression 
algorithms HT, FWT, MFHWT on the basis of processing 
time. The results showed that the time taken by MFHWT is 
least as compared to HT and FHT while compression [6]. 
The authors Navjot Kaur et al. proposed a new method of 
image compression using SPIHT and MFHWT and they do 
not implement [7]. The authors Ms.MansiKambli et al. 
proposed a modified SPIHT algorithm and implemented on 
gray scale fingerprint images to analyze the PSNR  
vales [8]. 
 

3. PROBLEM STATEMENT 
The objective of this work is to minimize the memory 
requirement by achieving high compression ratio without 
degrading the quality of image by using both lossy and 
lossless compression techniques. Also, the compression 
techniques reduce the delay and consume less power by 
transmitting the compressed data. The compressed 
information resembles a scramble message and an attacker 
in middle cannot able to understand. Therefore, the data 
compression not only reduces the size of the original data, 
but also gives data security. 
 

4. OVER VIEW OF PROPOSED METHOD 
The block diagram of the proposed work is shown in the 
Figure 1. The original image is compressed using Enhanced 
Set-Partitioning in Hierarchical Trees (ESPIHT) image 
compression technique which is the combination of 
Modified Fast Haar Wavelet Transform (MFHWT) & 
SPIHT and lossless Run Length coding (RLC) techniques. 
At receiver the compressed image is decompressed by 
reverse operation. 

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1510



 

 

 
Fig 1: Block diagram for proposed system 

 
This section provides overview of the proposed algorithm 
and in this algorithm MFHWT is combined with SPIHT to 
enhance the compression ratio without losing information. 
The Figure 2 is the flow chart of the proposed work. 
 

 
Fig 2:  Flow chart of proposed algorithm 

 

4.1 Modified Fast Haar Wavelet Transform 
(MFHWT) 
Modified Fast Haar Wavelet Transform (MFHWT), is one 
of the algorithms which can lessen the computation work in 
Haar Transform (HT) and Fast Haar Transform (FHT). 
Modified Fast Haar Transform not only allows certain 
calculation in the process decomposition be overlooked 
without affecting the results, but also still remains in simple 
type of calculation as for FHT. The MFHWT works based 
on the idea that approximate coefficients can be ignored 
since it is not involve in the reconstruction work as well as 
threshold process in multi-resolution wavelet analysis. As 
FHT, we use 2N data. For Modified Fast Haar Transform, 
MFHWT, it can be done by just taking (w+ x + y + z)/ 4 
instead of (x + y)/ 2 for approximation and (w+ x − y − z)/ 4 
instead of (x − y)/ 2 for differencing process. 4 nodes have 
been considered at once time. Notice that the calculation 
for (w+ x − y − z)/ 4 will give up the detail coefficients in 
the level of n – 2. In MFHWT, for data of size 2N, the 
approximations are calculated as  ௫ర೔ା௫ర೔శభା௫ర೔శమା௫ర೔శయସ , where i = 0, 1,……,

ଵସ(2ே) 

and detail sub signal at the same level is given as ௫ర೔ା௫ర೔శభି௫ర೔శమି௫ర೔శయସ , where i = 0, 1,……,
ଵସ(2ே) 

For the purpose of getting detail coefficients, still the 
differencing process between two nodes (x − y)/ 2  need to 
be done. The Figure 2 shows the calculation of the 
Modified Fast Haar Wavelet Transform, MFHWT, for n = 
4, given by the data F = [2 4 6 3 1 5 9 8 7 2 4 8 1 3 9 5] T. 
In MFHWT the decomposition can be done by using matrix 
formulation and get the values of approximation and detail 
coefficients one level (L) in advance than the FHT and HT 
(Figure 3).  
At each level in MFHWT, we need to store only half of the 
original data used in FHT shown in the Figure 3, due to 
which it increases its efficiency. It is used to reduce the 
memory requirements and the amount of inefficient 
movement of Haar coefficients. The Table 2 shows the 
comparison between FHT and Modified Fast Haar wavelet 
transform in terms of the computation parameters for  N=8. 
 

Table 2. Comparison between FHT and MFHWT 

Proce-
dure 

No of  
Addition/ 

Subtraction   
Operations 

No of 
Multiplication/ 

Division       
Operations 

No of 
Move-
ments 

 

No of 
Approx-
imation 

coefficients 

FHT 510 510 510 255 

MFHWT 850 340 340 85 

 
An important enlargement for the proposed MFHWT is the 
number of approximate coefficients can be reduced as well 
as number of division operations. This fulfils the target of 
trying to reduce the memory requirements of the transform 
and the amount of incompetent movement of Haar 
coefficients. The negative aspect in escalating the number 
of addition and subtraction operation is balanced by the 
diminishing in number of division operation as shown in 
the Table 2. 

 

Original 
image 

ESPIHT 
(MFHWT + SPIHT + RLC) 

Storage or 
Transmission 

Compressed image 

 
Inverse ESPIHT 

 

Reconstructed image 

Compressed image 

End 

Read the image as a matrix 

Apply MFHWT, along row and column wise 
on entire matrix  

For decompression, apply the inverse 
operation 

Apply SPIHT and finally apply RLC to the 
resulting bit stream 

Calculate performance metrics like MSE, 
PSNR, CR, and Coding time for the 

reconstructed image. 

Start 
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4.2 SPIHT Algorithm 
SPIHT algorithm is based on Embedded Zero tree Wavelet 
(EZW) coding method and it uses set partitioning sorting 
algorithm. Coefficients corresponding to the same spatial 
location in different sub bands in the pyramid structure 
exhibit self-similarity characteristics. SPIHT defines parent 
children relationships between these self- similar sub bands 
to establish spatial orientation trees [10]. 
     The terms and notations are used in SPIHT algorithm is 
shown here, as 
• C (i, j): wavelet transformed coefficient at coordinate 

(i, j). 
• O (i, j): set of coordinates of all offspring of node (i, j); 

children only. 
• D (i, j): set of coordinates of all descendants of node (i, 

j) children, grandchildren, great-grand, etc.   
• L (i, j): set of coordinates of all leaves of node (i, j). L 

(i, j) = D(i, j) - O(i, j) grandchildren, great-grand, etc..   
• H(I, j): set of coordinates of all nodes in the coarsest 

level of wavelet coefficient pyramid; ); parents 
• Sn(i, j): significance test of a set of coordinates {(i, j)} 

at  
                 bit plane level n 

Sn (i, j) = ቄ	1	0 		୧୤	୫ୟ୶ሼ(౟,ౠ)ሽሼ|େ(୧,୨)|ሽ	ஹଶ౤୭୲୦ୣ୰୵୧ୱୣ  

• Type A sets: for sets of type A the significance tests 

are to be applied to all descendants.  
• Type B sets: for sets of type B the significance tests are 

to be applied only to the leaves. 
 The flow chart of SPIHT Algorithm is shown in the  
Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Flow chart of ESPIHT Algorithm  
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          Approximate coefficient 
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          Averaging two nodes 

          Differencing two nodes 

          Differencing four nodes 

Initialization 
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Is Quantization 
level =1?  

Next 
Quantization 

No 

End 

Yes 

Fig 3: Operations of MFHWT (right side) and FHT (left side) 
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4.2.1 SPIHT Algorithm steps: 
1) Initialization: At the initialization stage first define the 

number of decomposition levels indicated by n using 
the following Eq.(1).  

n =	ൣlogଶ൫maxሼ(୧,୨)ሽሼ|C(i, j)|ሽ൯൧         (1) 
Then set the threshold value indicated by T = 2n ;  after 
then set the List of Significant Pixels (LSP) as an 
empty list, and position the coordinates in the coarsest 
level of wavelet coefficient pyramid to the List of 
Insignificant Pixels (LIP), and those which have 
descendants moved to the List of Insignificant Sets 
(LIS) as type A entries. 

2) Sorting Pass: In sorting pass there are two steps as 
follows 
(i) Assessment of  List of Insignificant Pixels  

In the sorting pass, the first step is to examine List of               
Insignificant Pixels. In this step the LIP is scanned to 
find out whether an entry coefficient is significant at 
the current threshold or not. If an entry is found to be 
significant, then output a bit 1 and another bit is used 
to represent the sign of the coefficient, which is 
marked by either 1 for positive or 0 for negative. 
Now the significant coefficient is moved to the LSP.  
If an entry is found to be insignificant, then the 
output is 0 bit followed by another bit for the sign of 
the coefficient. 

(ii) Assessment of  List of Insignificant Sets 
The second step of sorting pass is to examine the 
entries in LIS. First check the entry is type A or type 
B.  When an entry is the set of all descendants of a 
coefficient, named type A, then apply the magnitude 
tests for all descendants of the current entry is passed 
out to decide whether they are significant or not. If 
the entry is found to be as significant, the direct 
offsprings of the entry undergoes magnitude tests. If 
direct offspring is significant, it is moved into LSP; 
otherwise it is moved into LIP similar to the 
previous step. If the entry is found to be 
insignificant, a bit 0 is output and no further 
processing is needed. Finally, this insignificant entry 
is moved to the end of LIS as type B, which is the 
set of all descendants except for the immediate 
offspring (children) of a coefficient.  If the entry in 
LIS is type B, significance test is performed on the 
descendants of its direct offsprings. If significance 
test is true, the spatial orientation tree with root of 
type B entry is split into four sub-trees that are 
rooted by the direct offspring and these direct off 
springs are added in the end of LIS as type A entries 
and remove this entry as type B in the LIS. The 
imperative thing in LIS sorting is that entire sets of 
insignificant coefficients are represented with a 
single zero [10]. 

3) Refinement pass: it is used to output the refinement 
bits (nthbit) of the coefficients in LSP at current 
threshold. Before the algorithm proceeds to the next 
round, the current threshold is halved that is T/2. 

4) Quantization-Step Update: decrement n by 1 and go to 
step 2. This process is going on until the last 
quantization level will be equal to 1. 

4.3 Run Length Coding (RLC) 
Run-length coding is probably the simplest method of 
compression. The general idea behind this method is to 
replace consecutive repeating occurrences of a symbol by 
one occurrence of the symbol followed by the number of 
occurrences. Individual channel matrices were retrieved 
and used for processing. Firstly each matrix was scanned 
row wise for identifying repetitive pixels. Each group of 
such repetitions was then replaced by the pixel value and 
the frequency of occurrence. This was done exhaustively 
throughout the image matrix. For single occurrence of a 
particular value frequency was not used because that would 
cause an overhead affecting the compression efficiency.  
Sample processing example:  
Input stream: 22 22 22 57 57 57 57 33 33 33 33 33 22  
Output stream: 322 457 533 22  
The output stream produced a series of frequency-pixel 
value pairs and this new representation of original matrix 
information for individual matrices was forwarded to the 
next section for processing [12]. 
 

5. IMPLEMENTATION AND RESULT ANALYSIS 
The proposed algorithm is simulated using MATLAB on 
different color images of 512 X 512 sizes with the 
following metrics to evaluate the image quality. 
 
5.1 Mean Square Error (MSE): 
It refers to some sort of average or sum (or integral) of 
squares of the error between two images as shown in the 
Eq. (2).  

MSE = 
ଵெே∑ ∑ ,ݔ)ܫ	] (ݕ − ,ݔ)′ܫ ଶே௬ୀଵெ௫ୀଵ[(ݕ    (2) 

     Where I (x, y) is the original image data and I' (x, y) is 
the compressed image data. 
 
5.2 Peak Signal to Noise Ratio (PSNR):  
It is defined as the ratio between signal variance and 
reconstruction error variance. Peak Signal to Noise Ratio 
and Compression Ratios are calculated from the following 
Eq.(3).   

PSNR = 10log10ቀெ஺௑಺మெௌா ቁ (3) 

     Where MAXI is the maximum size of the image 
 
5.3 Compression Ratio (CR):  
Compression ratio is defined as the ratio between the 
original image size (n1) and compressed image size (n2) as 
in Eq.(4).     

CR =݊ଵ/݊ଶ (4) 
 

5.4 Coding Time: 
 It is the total time taken for the image compression and 
decompression. 
The Figure 5 shows that the original image and 
reconstructed images of SPHIT and ESPHIT algorithms. 
The performance of the two algorithms was assessed using 
error metrics on the test images. The quality of the 
reconstructed images is measured in terms of PSNR value 
and the efficiency of the proposed method is measured in 
terms of its compression ratio. 
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Original 
Image  

(a) 

Reconstructed 
Image with SPHIT  

(b) 

Reconstructed 
Image with 
ESPHIT (c) 

 

 

 

 

 

 
Fig 5: Results of image compression  

(a) Original image (b) SPIHT and (c) ESPIHT 
algorithms 

 
The analysis shows that the proposed algorithm reduces the 
computational complexity and in turn reduces the execution 
time with high PSNR. The Table 3 shows the comparison 
between two image compression techniques with different 
performance metrics. 

 
Table 3. Experimental Results 

   Using SPIHT         Using ESPIHT 

Image 
PSNR 
(dB) 

Coding Time 
(Sec) 

PSNR 
(dB) 

Coding Time 
(Sec) 

Image 1 41.7 0.748 43.78 0.615 
Image 2 40.85 2.062 42.57 1.091 
Image 3 38.96 0.766 40.51 0.632 
Image 4 40.31 0.989 41.95 0.732 
Image 5 44.16 0.976 47.87 0.721 
Image 6 38.49 0.628 40.27 0.574 

Using SPIHT         Using ESPIHT 

Image MSE 
Compression 

ratio (%) 
MSE 

Compression 
ratio (%) 

Image 1 4.397 30.06 2.72 52.78 
Image 2 5.347 46.96 3.599 63.17 
Image 3 8.262 44.83 5.776 70.20 
Image 4 6.058 32.34 4.155 55.74 
Image 5 2.497 32.68 1.062 53.87 
Image 6 9.317 54.93 6.113 84.78 

 
Figure 6 shows, the Mean Square Error (MSE) calculated 
for different images using SPIHT and ESPIHT algorithms. 
The number of images which are compressed using SPIHT 
and ESPIHT are plotted on the x-axis, where as MSE is 
plotted on the y-axis. It is observed that ESPIHT has lowest 
Mean Square Error as compared to SPIHT coding for all 
six test images considered and proved that it can maintain 
good quality of image. 

 
Fig 6: Analysis of MSE 

 
Fig 7: Analysis of PSNR 

Figure 7 shows, the PSNR calculated for different images 
using SPIHT and ESPIHT algorithms. The number of 
images which are compressed using SPIHT and ESPIHT 
are plotted on the x-axis, where as PSNR is plotted on the 
y-axis. It is observed that ESPIHT has highest PSNR as 
compared to SPIHT coding for all six test images 
considered and proved that the quality of reconstructed 
image in case of ESPIHT coding is highest. 

 

 
Fig 8: Analysis of Compression Ratio 
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Figure 8 shows, the Compression ratio calculated for 
different images using SPIHT and ESPIHT algorithms. The 
number of images which are compressed using SPIHT and 
ESPIHT are plotted on the x-axis, where as Compression 
ratio is plotted on the y-axis. It is observed that ESPIHT 
has highest Compression ratio as compared to SPIHT 
coding for all six test images considered and proved that 
the ESPIHT is better technique for compression. 
From Figure 9 it is observed that ESPIHT has lowest values 
for Coding Time as compared to SPIHT coding in all six 
types of test images taken. 
 

 
 

Fig 9: Analysis of processing time 
 
 

6. CONCLUSION 
In this work, ESPIHT algorithm which is efficient for 
compression is implemented and simulated successfully 
using MATLAB. The simulation results have shown that 
ESPIHT gives better compression ratio as compare to 
SPIHT without degrading the image quality and takes less 
time for compression using MFHWT. In future SPIHT can 
also be implemented for lossless image compression for 
higher image quality i.e. high PSNR without much decrease 
in compression ratio. 
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