

Enhanced Image Compression Algorithm for
Image Processing Applications
B. Kranthi

 M.Tech. (DECS), Gudlavalleru Engineering
College,Gudlavalleru, Krishna Dt., AP, India

Dr. M. Kamaraju

Professor & Head, ECE, Gudlavalleru Engineering
College, Gudlavalleru, Krishna Dt., AP, India

 Dr. B. Ananda Krishna
Professor, ECE, Gudlavalleru Engineering College,

Gudlavalleru, Krishna Dt., AP, India

B. Rajasekhar
Associate Professor, ECE, Gudlavalleru Engineering

College, Gudlavalleru, Krishna Dt., AP, India

Abstract-Due to the increasing traffic caused by multimedia
information and digitized form of representation of images;
image compression has become a necessity. New algorithms
for image compression based on wavelets have been developed
which offers considerable improvement in picture quality at
high compression ratios. To achieve lowest errors per
compression rate and highest perceptual quality, the existing
image compression algorithms are need to be modified. In this
paper, with the objective of achieving high image compression
ratio with minimum number of errors, the features of existing
image compression algorithms like Haar Wavelet Transform
are increased and named as Modified Fast Haar Wavelet
Transform (MFHWT). The Set Partitioning In Hierarchical
Trees (SPIHT) along with Run Length Encoding (RLE)
increases the compression ratio without degrading the image
quality. Also, the modified algorithm reduces the number of
computations in Haar transform, which decreases the
processing time. The proposed work was simulated using
MALAB and the results shows that the compression ratio
increases without affecting the Peak Signal to Noise Ratio
(PSNR) standards.

Keywords- Image Compression, DWT, MFHWT, ESPIHT,
RLE

1. INTRODUCTION

The uncompressed multimedia like graphics, audio and
video data requires large storage capacity and transmission
bandwidth despite rapid progress in mass storage density,
processor speed, digital communication system
performance and data transmission bandwidth continues to
exceed the capabilities of available technologies. The
recent growth of data demanding multimedia-based web
applications have not only the need for more competent
ways to encode signals and images but have made
compression of such signals central to storage and
communication technology. The Table 1 shows multimedia
data types and uncompressed storage space, transmission
bandwidth and transmission time required. The Table 1
clearly illustrates the need for sufficient storage space,
large transmission bandwidth and long transmission time
for image, audio and video data. At the present technology,
the only solution is to compress multimedia data before its
storage and transmission, and decompress it at the receiver
for playback [1].

Table 1. Multimedia data

Multi-
media
data

Size or
duration

Bits/
pixel

(or) Bits/
sample

Un-
Compress-

ed size
(B-bytes)

Transmi-
ssion
Band-
width

(b-bits)

Transmi-
ssion Time

(28.8 k
Modem)

Page of text 11” x 8.5”
Varying

resolution
4.8KB

32-64
Kb/page

1.1-2.2 Secs

Telephone
Quality
speech

10 Secs 8 bps 80 KB 64 Kb/Sec 22.2 Secs

Gray scale
image

512 x 512 8 bpp 262 KB
2.1 Mb
/image

1 min 13 Secs

Color image 512 x 512 24 bpp 786 KB
6.29 Mb
/image

3 min 39 Secs

Medical
image

2048 x
2048

12 bpp 5.16 MB
41.3 Mb
/image

23 min
54 secs

 1.1 Image Compression
The main aim of the Image compression is to reducing the
number of bits required to symbolize an image by
removing the spatial and spectral redundancies as much as
possible. In many different fields, digitized images are used
as photograph or x-rays rather than analog images. The
volume of data needed to describe such images greatly
slow transmission and makes storage prohibitively costly.
Therefore the information contained in images must be
compressed by extracting only visible elements, which are
then encoded. To increase the compression of the data to
represent an image substantially, the quantity of data is
reduced. The essential goal of image compression is to
reduce the bit rate for transmission or storage while
maintaining an acceptable reliability or image quality.
Wavelet-based coding provides a considerable
improvement in picture quality at privileged compression
ratios. Over the past few years, a variety of powerful and
sophisticated wavelet-based schemes for image
compression have been developed and implemented. A
wavelet basis consists of functions with both short support
(for high frequencies) and long support (for low
frequencies). Because of the many advantages, wavelet
based compression algorithms are the suitable for the new
JPEG-2000 standards. Transform-based image compression
is one of the most successful applications of wavelet
methods. Such a coder operates by transforming the data to
remove redundancy, then quantizing the transform
coefficients (a lossy step), and finally entropy coding the
quantizer output. The loss of information is introduced by

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1509

the quantization stage which intentionally discards less
related parts of the image information [1]. Over the past
few years, a variety of novel and sophisticated wavelet-
based image coding schemes have been developed. They
are

• Embedded Zero tree Wavelet (EZW),
• Set-Partitioning in Hierarchical Trees (SPIHT),
• Set Partitioned Embedded block coder (SPECK),
• Wavelet Difference Reduction (WDR),
• Adaptively Scanned Wavelet Difference

Reduction (ASWDR),
• Space –Frequency Quantization (SFQ),
• Compression with Reversible Embedded Wavelet

(CREW),
• Embedded Predictive Wavelet Image Coder (EPWIC),
• Embedded Block Coding with Optimized Truncation

(EBCOT),
• Stack- Run (SR).

SPIHT introduced in [13] is an enhancement of EZW
algorithm. By adopting set partitioning algorithm and
exploring self-similarity across different scales in an image
wavelet transform, SPIHT algorithm reaches high
compression performance. With SPIHT, the image is first
decomposed into a series of wavelet coefficients. Those
coefficients are then grouped into sets known as spatial
orientation trees. After that, the coefficients in each spatial
orientation tree are encoded progressively from the most
significant bit planes to the least significant bit planes,
starting with the coefficients with the highest
magnitude [14].

As with EZW, the SPIHT algorithm involves two coding
passes: the sorting pass and the refinement pass. The
sorting pass looks for zerotrees and sorts significant and
insignificant coefficients with respect to a given threshold.
And the refinement pass sends the precision bits of the
significant coefficients. After one sorting pass and one
refinement pass, which can be considered as one scan pass,
the threshold is halved, and the coding process is repeated
until the expected bit rate is achieved. SPIHT achieves very
compact output bit stream and low bit rate than that of its
predecessor’s EZW without adding an entropy encoder,
which allows its efficiency in terms of computational
complexity. Moreover, it uses a subset partitioning scheme
in the sorting pass to reduce the number of magnitude
comparisons, which also decrease the computational
complexity of the algorithm. Finally, the progressive mode
of SPIHT allows the interruption of coding/decoding
process at any stage of the compression [2]. Despite these
advantages, SPIHT presents the limitations like large
memory and delay shortcomings. To minimize these
limitations, a novel technique is proposed by enhancing the
SPIHT algorithm with the combination of Run Length
coding for image compression.

The rest of this paper is organized as follow. The next
section, Section2, gives an outline of the related works on
image compression. The Section 3 gives the objective of
the proposed algorithm. The ESPIHT algorithm is

explained in Section 4. Section5 shows results on the
performance metrics and provides comparisons with the
SPIHT coder. Finally Section 6 concludes the paper.

2. LITERATURE SURVEY
The authors Albertus Joko Santoso et al. considered the test
images of size 512x512 and analyzed with different
wavelets like Daubechies, Coiflet and Symlet with the
objective of achieving high PSNR and compression ratio.
The result analysis proved that Haar wavelet attains highest
Compression Ratio and PSNR than Coiflet and Symlet
wavelets [3].

The authors S.Narasimhulu et al. proposed lossy image
compression algorithm which is simple and effective for
gray-scale image compression with the combination of
Huffman coding and proposed to extend the work for the
color image and video compression [4].

Anuj Bhardwaj et al. compared different image
compression techniques like Haar Transform (HT), Fast
Haar Transform (FHT), and Modified Fast Haar Wavelet
Transform (MFHWT) on the basis of the Compression
Ratio and PSNR. The results illustrates that the MFHWT
has characteristics like sparse representation and fast
transformation and easy to implement. The comparison
results showed that the quality of reconstructed image is
high in MFHWT [5].

Kiran Arora et al. compared the image compression
algorithms HT, FWT, MFHWT on the basis of processing
time. The results showed that the time taken by MFHWT is
least as compared to HT and FHT while compression [6].
The authors Navjot Kaur et al. proposed a new method of
image compression using SPIHT and MFHWT and they do
not implement [7]. The authors Ms.MansiKambli et al.
proposed a modified SPIHT algorithm and implemented on
gray scale fingerprint images to analyze the PSNR
vales [8].

3. PROBLEM STATEMENT
The objective of this work is to minimize the memory
requirement by achieving high compression ratio without
degrading the quality of image by using both lossy and
lossless compression techniques. Also, the compression
techniques reduce the delay and consume less power by
transmitting the compressed data. The compressed
information resembles a scramble message and an attacker
in middle cannot able to understand. Therefore, the data
compression not only reduces the size of the original data,
but also gives data security.

4. OVER VIEW OF PROPOSED METHOD
The block diagram of the proposed work is shown in the
Figure 1. The original image is compressed using Enhanced
Set-Partitioning in Hierarchical Trees (ESPIHT) image
compression technique which is the combination of
Modified Fast Haar Wavelet Transform (MFHWT) &
SPIHT and lossless Run Length coding (RLC) techniques.
At receiver the compressed image is decompressed by
reverse operation.

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1510

Fig 1: Block diagram for proposed system

This section provides overview of the proposed algorithm
and in this algorithm MFHWT is combined with SPIHT to
enhance the compression ratio without losing information.
The Figure 2 is the flow chart of the proposed work.

Fig 2: Flow chart of proposed algorithm

4.1 Modified Fast Haar Wavelet Transform
(MFHWT)
Modified Fast Haar Wavelet Transform (MFHWT), is one
of the algorithms which can lessen the computation work in
Haar Transform (HT) and Fast Haar Transform (FHT).
Modified Fast Haar Transform not only allows certain
calculation in the process decomposition be overlooked
without affecting the results, but also still remains in simple
type of calculation as for FHT. The MFHWT works based
on the idea that approximate coefficients can be ignored
since it is not involve in the reconstruction work as well as
threshold process in multi-resolution wavelet analysis. As
FHT, we use 2N data. For Modified Fast Haar Transform,
MFHWT, it can be done by just taking (w+ x + y + z)/ 4
instead of (x + y)/ 2 for approximation and (w+ x − y − z)/ 4
instead of (x − y)/ 2 for differencing process. 4 nodes have
been considered at once time. Notice that the calculation
for (w+ x − y − z)/ 4 will give up the detail coefficients in
the level of n – 2. In MFHWT, for data of size 2N, the
approximations are calculated as ௫ర೔ା௫ర೔శభା௫ర೔శమା௫ర೔శయସ , where i = 0, 1,……,

ଵସ(2ே)

and detail sub signal at the same level is given as ௫ర೔ା௫ర೔శభି௫ర೔శమି௫ర೔శయସ , where i = 0, 1,……,
ଵସ(2ே)

For the purpose of getting detail coefficients, still the
differencing process between two nodes (x − y)/ 2 need to
be done. The Figure 2 shows the calculation of the
Modified Fast Haar Wavelet Transform, MFHWT, for n =
4, given by the data F = [2 4 6 3 1 5 9 8 7 2 4 8 1 3 9 5] T.
In MFHWT the decomposition can be done by using matrix
formulation and get the values of approximation and detail
coefficients one level (L) in advance than the FHT and HT
(Figure 3).
At each level in MFHWT, we need to store only half of the
original data used in FHT shown in the Figure 3, due to
which it increases its efficiency. It is used to reduce the
memory requirements and the amount of inefficient
movement of Haar coefficients. The Table 2 shows the
comparison between FHT and Modified Fast Haar wavelet
transform in terms of the computation parameters for N=8.

Table 2. Comparison between FHT and MFHWT

Proce-
dure

No of
Addition/

Subtraction
Operations

No of
Multiplication/

Division
Operations

No of
Move-
ments

No of
Approx-
imation

coefficients

FHT 510 510 510 255

MFHWT 850 340 340 85

An important enlargement for the proposed MFHWT is the
number of approximate coefficients can be reduced as well
as number of division operations. This fulfils the target of
trying to reduce the memory requirements of the transform
and the amount of incompetent movement of Haar
coefficients. The negative aspect in escalating the number
of addition and subtraction operation is balanced by the
diminishing in number of division operation as shown in
the Table 2.

Original
image

ESPIHT
(MFHWT + SPIHT + RLC)

Storage or
Transmission

Compressed image

Inverse ESPIHT

Reconstructed image

Compressed image

End

Read the image as a matrix

Apply MFHWT, along row and column wise
on entire matrix

For decompression, apply the inverse
operation

Apply SPIHT and finally apply RLC to the
resulting bit stream

Calculate performance metrics like MSE,
PSNR, CR, and Coding time for the

reconstructed image.

Start

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1511

4.2 SPIHT Algorithm
SPIHT algorithm is based on Embedded Zero tree Wavelet
(EZW) coding method and it uses set partitioning sorting
algorithm. Coefficients corresponding to the same spatial
location in different sub bands in the pyramid structure
exhibit self-similarity characteristics. SPIHT defines parent
children relationships between these self- similar sub bands
to establish spatial orientation trees [10].
 The terms and notations are used in SPIHT algorithm is
shown here, as
• C (i, j): wavelet transformed coefficient at coordinate

(i, j).
• O (i, j): set of coordinates of all offspring of node (i, j);

children only.
• D (i, j): set of coordinates of all descendants of node (i,

j) children, grandchildren, great-grand, etc.
• L (i, j): set of coordinates of all leaves of node (i, j). L

(i, j) = D(i, j) - O(i, j) grandchildren, great-grand, etc..
• H(I, j): set of coordinates of all nodes in the coarsest

level of wavelet coefficient pyramid;); parents
• Sn(i, j): significance test of a set of coordinates {(i, j)}

at
 bit plane level n

Sn (i, j) = ቄ	1	0 		୧୤	୫ୟ୶ሼ(౟,ౠ)ሽሼ|େ(୧,୨)|ሽ	ஹଶ౤୭୲୦ୣ୰୵୧ୱୣ

• Type A sets: for sets of type A the significance tests

are to be applied to all descendants.
• Type B sets: for sets of type B the significance tests are

to be applied only to the leaves.
 The flow chart of SPIHT Algorithm is shown in the
Figure 4.

Fig 4: Flow chart of ESPIHT Algorithm

L0 L1 L 2 L 3 L 4 L 2 L 0

6

4

6

9

3

8

1

2

5

5

9

3

1

8

4

2

7

2

-1

-0.75

-2.75

-0.75

2.5

-1

1.5

-2

-2

0.5

2.5

3.75

5.75

5.25

4.5

4.81

-1

-0.6

0.37

2

-1

1.5

-2

-2

0.5

2.5

4.5

2

7

-1

3

4.5

3

8.5

3.75

-2.75

-0.75

2.5

5.75

5.25

4.5

-0.75

4.87

-1

0.37

4.75 4.81

-0.6

 Data/node

 Approximate coefficient

 Detail coefficient

 Averaging two nodes

 Differencing two nodes

 Differencing four nodes

Initialization

Sorting

Refinement

Is Quantization
level =1?

Next
Quantization

No

End

Yes

Fig 3: Operations of MFHWT (right side) and FHT (left side)

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1512

4.2.1 SPIHT Algorithm steps:
1) Initialization: At the initialization stage first define the

number of decomposition levels indicated by n using
the following Eq.(1).

n =	ൣlogଶ൫maxሼ(୧,୨)ሽሼ|C(i, j)|ሽ൯൧ (1)
Then set the threshold value indicated by T = 2n ; after
then set the List of Significant Pixels (LSP) as an
empty list, and position the coordinates in the coarsest
level of wavelet coefficient pyramid to the List of
Insignificant Pixels (LIP), and those which have
descendants moved to the List of Insignificant Sets
(LIS) as type A entries.

2) Sorting Pass: In sorting pass there are two steps as
follows
(i) Assessment of List of Insignificant Pixels

In the sorting pass, the first step is to examine List of
Insignificant Pixels. In this step the LIP is scanned to
find out whether an entry coefficient is significant at
the current threshold or not. If an entry is found to be
significant, then output a bit 1 and another bit is used
to represent the sign of the coefficient, which is
marked by either 1 for positive or 0 for negative.
Now the significant coefficient is moved to the LSP.
If an entry is found to be insignificant, then the
output is 0 bit followed by another bit for the sign of
the coefficient.

(ii) Assessment of List of Insignificant Sets
The second step of sorting pass is to examine the
entries in LIS. First check the entry is type A or type
B. When an entry is the set of all descendants of a
coefficient, named type A, then apply the magnitude
tests for all descendants of the current entry is passed
out to decide whether they are significant or not. If
the entry is found to be as significant, the direct
offsprings of the entry undergoes magnitude tests. If
direct offspring is significant, it is moved into LSP;
otherwise it is moved into LIP similar to the
previous step. If the entry is found to be
insignificant, a bit 0 is output and no further
processing is needed. Finally, this insignificant entry
is moved to the end of LIS as type B, which is the
set of all descendants except for the immediate
offspring (children) of a coefficient. If the entry in
LIS is type B, significance test is performed on the
descendants of its direct offsprings. If significance
test is true, the spatial orientation tree with root of
type B entry is split into four sub-trees that are
rooted by the direct offspring and these direct off
springs are added in the end of LIS as type A entries
and remove this entry as type B in the LIS. The
imperative thing in LIS sorting is that entire sets of
insignificant coefficients are represented with a
single zero [10].

3) Refinement pass: it is used to output the refinement
bits (nthbit) of the coefficients in LSP at current
threshold. Before the algorithm proceeds to the next
round, the current threshold is halved that is T/2.

4) Quantization-Step Update: decrement n by 1 and go to
step 2. This process is going on until the last
quantization level will be equal to 1.

4.3 Run Length Coding (RLC)
Run-length coding is probably the simplest method of
compression. The general idea behind this method is to
replace consecutive repeating occurrences of a symbol by
one occurrence of the symbol followed by the number of
occurrences. Individual channel matrices were retrieved
and used for processing. Firstly each matrix was scanned
row wise for identifying repetitive pixels. Each group of
such repetitions was then replaced by the pixel value and
the frequency of occurrence. This was done exhaustively
throughout the image matrix. For single occurrence of a
particular value frequency was not used because that would
cause an overhead affecting the compression efficiency.
Sample processing example:
Input stream: 22 22 22 57 57 57 57 33 33 33 33 33 22
Output stream: 322 457 533 22
The output stream produced a series of frequency-pixel
value pairs and this new representation of original matrix
information for individual matrices was forwarded to the
next section for processing [12].

5. IMPLEMENTATION AND RESULT ANALYSIS
The proposed algorithm is simulated using MATLAB on
different color images of 512 X 512 sizes with the
following metrics to evaluate the image quality.

5.1 Mean Square Error (MSE):
It refers to some sort of average or sum (or integral) of
squares of the error between two images as shown in the
Eq. (2).

MSE =
ଵெே∑ ∑ ,ݔ)ܫ] (ݕ − ,ݔ)′ܫ ଶே௬ୀଵெ௫ୀଵ[(ݕ (2)

 Where I (x, y) is the original image data and I' (x, y) is
the compressed image data.

5.2 Peak Signal to Noise Ratio (PSNR):
It is defined as the ratio between signal variance and
reconstruction error variance. Peak Signal to Noise Ratio
and Compression Ratios are calculated from the following
Eq.(3).

PSNR = 10log10ቀெ஺௑಺మெௌா ቁ (3)

 Where MAXI is the maximum size of the image

5.3 Compression Ratio (CR):
Compression ratio is defined as the ratio between the
original image size (n1) and compressed image size (n2) as
in Eq.(4).

CR =݊ଵ/݊ଶ (4)

5.4 Coding Time:
 It is the total time taken for the image compression and
decompression.
The Figure 5 shows that the original image and
reconstructed images of SPHIT and ESPHIT algorithms.
The performance of the two algorithms was assessed using
error metrics on the test images. The quality of the
reconstructed images is measured in terms of PSNR value
and the efficiency of the proposed method is measured in
terms of its compression ratio.

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1513

Original
Image

(a)

Reconstructed
Image with SPHIT

(b)

Reconstructed
Image with
ESPHIT (c)

Fig 5: Results of image compression

(a) Original image (b) SPIHT and (c) ESPIHT
algorithms

The analysis shows that the proposed algorithm reduces the
computational complexity and in turn reduces the execution
time with high PSNR. The Table 3 shows the comparison
between two image compression techniques with different
performance metrics.

Table 3. Experimental Results

 Using SPIHT Using ESPIHT

Image
PSNR
(dB)

Coding Time
(Sec)

PSNR
(dB)

Coding Time
(Sec)

Image 1 41.7 0.748 43.78 0.615
Image 2 40.85 2.062 42.57 1.091
Image 3 38.96 0.766 40.51 0.632
Image 4 40.31 0.989 41.95 0.732
Image 5 44.16 0.976 47.87 0.721
Image 6 38.49 0.628 40.27 0.574

Using SPIHT Using ESPIHT

Image MSE
Compression

ratio (%)
MSE

Compression
ratio (%)

Image 1 4.397 30.06 2.72 52.78
Image 2 5.347 46.96 3.599 63.17
Image 3 8.262 44.83 5.776 70.20
Image 4 6.058 32.34 4.155 55.74
Image 5 2.497 32.68 1.062 53.87
Image 6 9.317 54.93 6.113 84.78

Figure 6 shows, the Mean Square Error (MSE) calculated
for different images using SPIHT and ESPIHT algorithms.
The number of images which are compressed using SPIHT
and ESPIHT are plotted on the x-axis, where as MSE is
plotted on the y-axis. It is observed that ESPIHT has lowest
Mean Square Error as compared to SPIHT coding for all
six test images considered and proved that it can maintain
good quality of image.

Fig 6: Analysis of MSE

Fig 7: Analysis of PSNR

Figure 7 shows, the PSNR calculated for different images
using SPIHT and ESPIHT algorithms. The number of
images which are compressed using SPIHT and ESPIHT
are plotted on the x-axis, where as PSNR is plotted on the
y-axis. It is observed that ESPIHT has highest PSNR as
compared to SPIHT coding for all six test images
considered and proved that the quality of reconstructed
image in case of ESPIHT coding is highest.

Fig 8: Analysis of Compression Ratio

image
1

image
2

image
3

image
4

image
5

image
6

SPIHT 4.397 5.437 8.262 6.058 2.497 9.317

ESPIHT 2.72 3.599 5.776 4.155 1.062 6.113

0
1
2
3
4
5
6
7
8
9

10

M
SE

MSE

image
1

image
2

image
3

image
4

image
5

image
6

SPIHT 41.7 40.85 38.96 40.31 44.16 38.49

ESPIHT 43.78 42.57 40.51 41.95 47.87 40.27

0

10

20

30

40

50

60

P
S

N
R

 (
d

B
)

PSNR

image
1

image
2

image
3

image
4

image
5

image
6

SPIHT 30.06 46.96 44.83 32.34 32.68 54.93

ESPIHT 43.78 42.57 40.51 41.95 47.87 40.27

0

10

20

30

40

50

60

C
R

 (
%

)

Compression Ratio (CR)

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1514

Figure 8 shows, the Compression ratio calculated for
different images using SPIHT and ESPIHT algorithms. The
number of images which are compressed using SPIHT and
ESPIHT are plotted on the x-axis, where as Compression
ratio is plotted on the y-axis. It is observed that ESPIHT
has highest Compression ratio as compared to SPIHT
coding for all six test images considered and proved that
the ESPIHT is better technique for compression.
From Figure 9 it is observed that ESPIHT has lowest values
for Coding Time as compared to SPIHT coding in all six
types of test images taken.

Fig 9: Analysis of processing time

6. CONCLUSION
In this work, ESPIHT algorithm which is efficient for
compression is implemented and simulated successfully
using MATLAB. The simulation results have shown that
ESPIHT gives better compression ratio as compare to
SPIHT without degrading the image quality and takes less
time for compression using MFHWT. In future SPIHT can
also be implemented for lossless image compression for
higher image quality i.e. high PSNR without much decrease
in compression ratio.

REFERENCES
[1] R.Sudhakar, R Karthiga, S.Jayaraman , “Image Compression using

Coding of Wavelet Coefficients – A Survey”, ICGST-GVIP Journal,
Volume (5), Issue (6), June 2005.

[2] Vidhi Dubey, N.K.Mittal, and S.G.kerhalkar, “A Review on
Wavelet-Based Image Compression Techniques”, International
Journal of Scientific Engineering and Technology (ISSN: 2277-
1581), Volume No. 2, Issue No. 8, pp : 783-7881 Aug. 2013.

[3] Albertus Joko Santoso, Dr.Lukito Edi Nugroho, Dr.Gede Bayu
Suparta and Dr.Risanuri Hidayat, “Compression Ratio and Peak
Signal to Noise Ratio in Gray scale Image Compression using
Wavelet”, ISSN : 2229-4333(Print) | ISSN : 0976-8491(Online)
www.ijcst.com IJCSt Vol. 2, ISSue 2, June 2011.

[4] S.Narasimhulu and Dr.T.Ramashri, “Gray-Scale Image Compression
Using DWT-SPIHT Algorithm”, International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 2, Issue 4, July-August 2012.

[5] Anuj Bhardwaj and Rashid Ali, “Image Compression Using
Modified Fast Haar Wavelet Transform”, World Applied Sciences
Journal 7 (5): 647-653, 2009 ISSN 1818-4952 © IDOSI
Publications, 2009.

[6] Kiran Arora and Amanpreet Singh Brar, “Compression of 2-D
images using In Place Modified Fast Haar Wavelet Transform”,
International Journal for Science and Emerging Technology with
Latest Trends.

[7] Navjot Kaur and Preeti Singh, “A New Method of Image
Compression Using Improved SPIHT and MFHWT”, International
Journal of Latest Research in Science and
Technology,ISSN:(Online):2278-5299,Vol.1, Issue2: Page No124-
126, July- August(2012).

[8] Ms.MansiKambli and Ms.Shalini Bhatia, “Comparison of different
Fingerprint Compression Techniques”, Signal & Image Processing
An International Journal (SIPIJ) Vol.1, No.1, September 2010.

[9] Manik Groach and Amit Garg, “Performance Analysis of DCSPIHT
and SPIHT Algorithm for Image Compression”, International
Journal of Advanced Research in Computer Science and Software
Engineering Research Paper Volume 2, Issue 3, March 2012 ISSN:
2277 128X.

[10] Ritu Chourasiya and Prof. Ajit Shrivastava,“A study of image
compression based transmission algorithm using spiht for low bit
rate application”, Advanced Computing: An International Journal
(ACIJ), Vol.3, No.6, November 2012.

[11] Dr.B.Eswara Reddy and K Venkata Narayana, “A Lossless Image
Compression Using Traditional And Lifting Based Wavelets”,
Signal & Image Processing: An International Journal (SIPIJ) Vol.3,
No.2, and April 2012.

[12] Nagarajan and Dr.K.Alagarsamy,“An Enhanced Approach in Run
Length Encoding Scheme”, International Journal of Engineering
Trends and Technology- July to Aug Issue 2011.

[13] A.Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243–
250, 1996.

[14] Abdelhamid Mammeri, Brahim Hadjou, and Ahmed Khoumsi, “A
Survey of Image Compression Algorithms for Visual Sensor
Networks”, International Scholarly Research Network ISRN Sensor
Networks Volume 2012, Article ID 760320, 19 pages

image
1

image
2

image
3

image
4

image
5

image
6

SPIHT 0.748 2.062 0.766 0.989 0.976 0.628

ESPIHT 0.615 1.091 0.632 0.732 0.721 0.574

0

0.5

1

1.5

2

2.5

T
im

e
(S

ec
)

Coding Time

B. Kranthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1509-1515

www.ijcsit.com 1515

